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ABSTRACT 

A boundary value problem of two elastic bodies Ln 

contact is considered, The bodies are finite circular cyl- 

inders of different dimensions and material constants and 

are isotropic and homogeneous, They are forced into contact 

across the plane faces such that the resulting stresses and 

displacements are axisymmetricl The solution utilizes 

Love's stress function to generate a family of biorthogonal 

eigenfunctions for each cylinder. The interrelated Fourier 

coefficients are expressed implicitly by an infinite system 

of linear algebraic equations. By truncation, an explicit 

solution of the Fourier coefficients is obtained. 

Two example problems are solvedr first, the two 

cylinders are placed in frictionless contact; second, the 

two cylinders are placed in bonded contact, In each problem, 

the other face of each cylinder undergoes a constant displace- 

ment with zero shear tractions. Selected numerical results 

are presented in graphical form, 
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CHAPTER I 

THE PROBLEM 

I n  t h i s  t h e s i s ,  a method f o r  s o l v i n g  t h e  c o n t a c t  

problem of two f i n i t e  c i r c u l a r  c y l i n d e r s  i s  presented .  

The c y l i n d e r s  are fo rced  i n t o  c o n t a c t  a c r o s s  t h e  p lane  

f a c e s  such t h a t  t h e  r e s u l t i n g  s t r e s s e s  and d isp lacements  

are axisymmetric. They a r e  compressed between two r ig id ,  

f r i c t i o n l e s s  faces as shown i n  f i g u r e  1. 

Both c y l i n d e r s  a r e  assumed t o  be homogeneous, 

i s o t r o p i c ,  and e l a s t i c .  Each c y l i n d e r  may have i t s  own 

r a d i u s ,  l e n g t h ,  Young's modulusI and Poisson's r a t i o .  

The curved s u r f a c e s  w i l l  be assumed t o  be f r e e  o f  t r a c -  

t i o n s .  

Two example problems w i l l  be solved:  f irst ,  t h e  

two c y l i n d e r s  a r e  p laced  i n  f r i c t i o n l e s s  c o n t a c t  w i t h  each 

o t h e r ;  second, t h e  two c y l i n d e r s  are placed i n  bonded 

c o n t a c t  e 

The s o l u t i o n  w i l l  be based on Power [l] and Power 

and C h i l d s  [ Z ] .  Other s o l u t i o n s  f o r  t h e  f i n i t e  c y l i n d e r  

do e x i s t  b u t  a r e  n o t  s a t i s f a c t o r y  because of numerical  

p r o p e r t i e s  o r  approximate schemes €or meeting t h e  bound- 

a r y  cond i t ions .  
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Ficure 1, The  Two . ?y l in ; f e r s  in Contact  



CHAPTER I1 

THE FINITE CYLINDER 

The solution f o r  a finite cylinder problem, as 

formulated by Power [l] 

in the form of a series of Bessel functions times expo- 

nential functions plus an improper Fourier integral. 

The Love function was taken to be the sum of three solu- 

tions 

is based on a Love function [3] 

0 where x is the zero eigenvalue solution; x ’ i s  the self- 

equilibrated solution associated with the complex eigen- 

values; and ‘is the particular solution associated with 

body forces, which will be neglected. 

The governing equation for the homogeneous solutions 

x o  and x ’ i s  

Each of the separate solutions satisfies the boundary 

conditions on the curved surface. 

In terms of the Love function, , the stresses and 
displacements that are not zero are given by [3]8 
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- 
z -  

7 = [(l - V ) V 2 X -  x,zz]  # r  

E w  
1 + V  
- = 2 ( 1 - V ) V 2 X  - X z z  

The zero eigenvalue solution of the biharmonic 

equation v4x = 0 

A sufficient portion is 

is found by separation of variables. 

(2.4) 3v 
1-2w 

x o  = Az3 + BzZ + - Ar2z 

For a cylinder of radius R, the stresses and displacements 

obtained f rom are 
0 

0- = o  - crp = - 

z - 
R 



5 
It is more appropriate to call this solution the 

uniform axial stress solution, as can be seen by equation 

(2.5b). Equation (2.5d) shows that this solution produces 

a net axial displacement consisting o f  two terms. The first 

term is proportional to Zm The second term is the net axial 

displacement at z = 0 and is considered as a rigid body 

displacement. 
1 for the finite 

cylinder is based on Little and Childs [b] solution of the 

semi-infinite cylinder. This solution, containing only the 

eigenvalues in -the right half of the complex plane, was 

extended by Power [l] to solve the finite cylinder by using 

the eigenvalues in the left half o f  the complex plane and 

the axial coordinate z - L .  This solution for a finite cyl- 

inder of radius R, length L, and with self-equilibrated 

tractions on both ends is 

The self-equilibrated solution, x 

(2.6~1) 

(2.6b) 

(2.6~) 

(2.6d) 



The dimensionless eigenvalues, Yj , are defined as 

where the SjR are the roots o f  the characteristic equation 

The eigenfunctions, cp ( Y j  , r / R ) ,  are a l s o  dimensionless and 

are given in the Appendix. 
1 

'.The specified boundary values of x are defined as 



The Four i e r  c o e f f i c i e n t s  a r e  t h e r e f o r e  ob ta ined  f rom 

t h e  i n t e g r a l s  

d_r 
R 

t 

( 2 .. 1 Ob ) 

where 

E x p l i c i t  forms o f  t h e  W f u n c t i o n s  a r e  g iven  i n  t h e  

Appendix e 

Only fou r  o f  t h e  f u n c t i o n s  (2 .9 )  may be a r b i t r a r i l y  

s p e c i f i e d  as s e l f - e q u i l i b r a t e d  boundary c o n d i t i o n s D  The 

o t h e r  f o u r  a r e  ob ta ined  from equa t ions  ( Z e 6 )  eva lua ted  a t  

t h e  a p p r o p r i a t e  boundary, Equat ions (2.90)  may t h e n  be 

w r i t t e n  i n  t h e  form 
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where G l j  and G 2 j  represent that part of the integral con- 

taining the specified boundary conditions on x 1 

It should be noted that, in order to avoid a null 

self-equilibrated solution, the specified boundary con- 

ditions must contain at least one of the functions ( 2 . 9 )  

where the uniform axial stress solution does differ from 

the boundary condition. 



CHAPTER 111 

TWO CYLINDERS IN CONTACT 

The solution for the two cylinder contact problem 

will be found by using the finite cylinder solution appli- 

cable to each of the two cylinders. The equations will then 

be solved simultaneously to yield the Fourier coefficients 

in accordance with the boundary and continuity conditions. 

The geometric dimensions of the two cylinders are indicated 

in figure 1. For the lower cylinder, its eigenvalues and 

Fourier coefficients will be denoted by yj and a,, and a2j 

respectively. Similarly, X j  and a3j and adj will be used 

for the upper cylinder. Subscripts ( ) L  and ( ) "  will 

denote other values for the lower and upper cylinders, 

respectively. 

The Uniform Axial Stress Solution. 

Equations ( 2 . 5 )  from the previous chapter will be 

used. It is convenient t o  write them in this forms 
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The T o t a l  So lu t ion .  

The t o t a l  s o l u t i o n  w i l l  be t h e  sum of t h e  s e l f -  

e q u i l i b r a t e d  s o l u t i o n  and t h e  uniform a x i a l  s t r e s s  s o l u -  

t i o n .  For t h e  lower c y l i n d e r ,  it i s  

S i m i l a r  equat ions  can be w r i t t e n  f o r  t h e  upper c y l i n d e r .  

An example i s  

The Four i e r  C o e f f i c i e n t s .  

The f o l l o w i n g  f u n c t i o n s  will be def ined  f o r  s p e c i -  
1 f y i n g  t h e  boundary v a l u e s  of f o r  t h e  lower cy l inder : ,  
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S i m i l a r l y ,  t h e s e  w i l l  be def ined  for the upper cylinder 

The cp and W f u n c t i o n s  e x h i b i t  an inner b i o r t h o g o n a l i t y  

i n  t h e  form 

I 
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Using t h i s  p r o p e r t y ,  t h e  F o u r i e r  c o e f f i c i e n t s  are obtaified 

from the  i n t e g r a l s :  

I t  can be shown that when t h e  spec i f i . ed  boundary con- 

d i t i o n s  per ta i r l ing t o  a two c y l i n d e r  c o n t a c t  problem and t h e  

unspec i f ied  c o n d i t i o n s  8.re substituted into equat lons ( 3 . 7 )  

and then i n t e g r a t e d  the  F o u r i e r  c o e f f i c i e n t s  can be expressed 

i n  t h e  form of t h e  following mat r ix  e q u a t i c n s :  



OD 

i- 

W 2 C'iY a,, + 
K = l  

( 3 . W  

m 

where G m j ,  t h e  f o r c i n g  func t ion  v e c t o r s ,  a r e  t h a t  p a r t  of 

t h e  i n t e g r a l  ( 3  e 7 )  which con ta ins  the  s p e c i f i e d  boundary 

c o n d i t i o n s  on x ' .  
through 4 r e p r e s e n t  t h e  p a r t  of t he  i n t e g r a l  ( 3  e 7)  con ta in -  

i n g  t h e  unspec i f l ed  cond i t ions  on x'. 
n u i t y  cond i t ions  a r e  r ep resen ted  by the  ma t r i ces  B5 jkg  B 6 j k p  

Ctj jk ,  c6jke Unspecif ied cond i t ions  a r e  based on the  

s o l u t i o n  for t h e  s t r e s s e s  and displacements  eva lua ted  a t  

t h e  boundary Genera l ly ,  the  i n f i n i t e  systems of equa t ions  

( 3  e 8 )  can be s a t i s f a c t o r i l y  approximated by t r u n c a t i o n .  

The mat r ices  Bnjk and Cnjk f o r  n = 1 

The unspec i f i ed  c o n t i -  
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s stated by Power [119 this would be true if the matrices 

, are strongly diagonal, which would result in the lower 

order coefficients being only slightly influenced by the 

higher order ones. 

through 4 does exhibit this characteristic. However, the 

matrices BSjk, B6jkr  c5jk,  and C6jk contain eigenfunctions 

from one cylinder and biorthogonal functions from the other 

cylinder. It is believed that they are somewhat strongly 

diagonal depending on the configuration of the cylinders 

and material constants. A positive proof is beyond the 

scope of this t h e s i s  but it will be assumed that all ma- 

trices can be truncated t o  yield results that are suffi- 

ciently accurate. 

The matrices Bnjk and Cnjk for n=l 



CHAPTER IV 

EXAMPLE P R O B L ~ S  

Two particular problems will be considered: 

Problem 1. The cylinders are in frictionless contact 

with each other. This implies the continuity of  normal 

stresses and normal displacements. In addition, the radial 

shear stress will be zero at the interface boundaries. 

Problem 2. The cylinders are bonded together. This 

implies 'that the normal displacements, normal stresses, 

radial displacements, and radial shearing stresses are con- 

tinuous through the contact interface. 

As a prelude, a short discussion of the indentation 

of an elastic half space by a rigid, flat-ended cylindrical 

punch will be made, The solution is concise and well known. 

It has many similarities to the two cylinder contact 

blem. For a rigid cylinder of radius T) indenting an 

half space, the contact pressure is given by Sneddon 

pro- 

elastic 

[6] as: 

(4.1 1 

where p is the average pressure based on the total load, F 
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Equation (4.1) shows t h a t  t h e  c o n t a c t  p r e s s u r e  i n c r e a s e s  

from $p a t  t h e  c e n t e r  of t h e  punch t o  i n f i n i t y  a t  t h e  edge 

o f  t h e  punch. 

I t  i s  expected t h a t  a s t r e s s  s i n g u l a r i t y  of t h i s  

n a t u r e  w i l l  e x i s t  f o r  t h e  t w o  c y l i n d e r  c o n t a c t  problem. It  

would occur  a t  t h e  i n t e r f a c e  f o r  t h e  v a l u e  r = t. 

Boundary Condit ions a t  t h e  R i g i d  Faces. 

I t  i s  convenient  t o  f irst  cons ide r  t h e  boundary con- 

d i t i o n s  which a r e  a p p l i c a b l e  t o  both  problems. I t  w i l l  be 

r e c a l l e d  t h a t  t h e  r i g i d  compression f a c e s  are assumed t o  

c o n t a c t  t h e  c y l i n d e r  ends i n  a f r i c t i o n l e s s  manner. More- 

over ,  t h e  bottom f a c e  remains s t a t i o n a r y  and t h e  t o p  f a c e  

i s  d i sp laced  downward an amount equal  t o  6 .  Four boundary 

c o n d i t i o n s  f o r  t h e  two c y l i n d e r s  are: 

1 
The r e l a t e d  boundary cond i t ions  on are then:  

S u b s t i t u t i o n  o f  t h e s e  s p e c i f i e d  c o n d i t i o n s  and t h e  appro- 

p r i a t e  unspec i f i ed  cond i t ions  i n t o  equa t ions  (3.7a) and 

(3 .7d )  r e s u l t s  i n  



-Aw h/7 

These r e s u l t s  a r e  s u b s t i t u t e d  i n t o  equat ions  (3.8a) and 

( 3 . 8 d )  to y i e l d  

(4 .6a)  

(4.6b) 

It  i s  apparent  t h a t  t h e s e  last  two equat ions  can be s u b s t i -  

tuded d i r e c t l y  i n t o  equat ions  (3.8b) and (3.8~). The 

r e s u l t s  a r e :  

3.j * 
where 



18 

(4.8a) 

(4,8b) P e 

3 j k  - ik 3 j k  

(4.8d) 

Substitution of equation (4.7b) into (&.?a) results in this 

explicit matrix solution for a 3 k :  

- 1  

a 2 =  [D2 - D5D;’D6] [ G 2 +  D5D;’G3] (4.9) 

The other sets of Fourier coefficients can now be readily 

found by using equations (4.7b) and (4.6). 

The Constants f o r  the Uniform Axial Stress Solution. 

The total solution for the axial displacements at 

the boundaries will first be given. Equations (4.6) and 

t h e  appropriate value for z will be substituted into equa- 

tions (3 .2d )  and (3.13) to give 

(4.lOa) 
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The boundary condition that w L ( r ,  0) = 0 is substituted into 

equation (4.10a) to yield: 

BL = 0 ( 4 a l l )  

The force equilibrium condition requires that the following 

be true 

1 rl 

dzLr dr = d,,r dr 
0 0 

Substitution of equations (3.Za) and (3.3) into (4.12) 

leads to 

(4.12) 

The continuity of displacements at the interface can be 

ensured by 

wJr, i? 1 = w U h  0 )  (4.14) 

This equation is valid for all values of r l a o  

a finite number of the eigenfunctions will be used and it is 

then desirable to use the integral of this equation 

In applications, 
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P P 

wL(r, $ )  r dr = wu(r, 0 )  r dr 
0 0 

(4.15) 

where O < P _ < ~ ) .  

into (4.15) leads to 

Substitution of equations (4.10b) and ( 4 . 1 0 ~ )  

- -  Bu - E, [ c  - I ]  
AL EL 

(4.16) 

where 

The constant, A,, can now be determined. The bound- 

ary condition that wu(r, h )  = - 6  and equations (4.13) and 

(4.16) will be substituted into equation (4.lOd) to yield 

(4.18) 

The zero-eigenvalue solution is therefore found to be 
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Problem 1. Frictionless Contact, 

Consider a cylinder of  radius 1 as being placed into 

frictionless contact with an upper cylinder whose radiusI 

is equal to o r  less than 1. For the lower cylinder, the 

following boundary conditions will be used: 

cr&,-49 = cf -&(r ,o)~ os.Cvgq 

TJt-,&) = 0 

(4.20a) 

(be20b) 

(4.20~) 

For the upper cylinder, these boundary conditions will be 

used: 

Z"W, 0 )  = 0 (4.21b) 

The self-equilibrated boundary conditions on ' are then: 

d s (4.22a) 
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(4,22c) 3 
_. 

The unspecified conditions are 

Substitution of these conditions into the Fourier integrals 

(3 .7b)  and (3.7~) result in the following forcing functions 

and matrices: 
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d 

(4.24.d) 

(4.24e) 

(4.24.f) 

(4.24.g) 

( 4 2 4 h )  

(4.24.i) 

(4 ,24j)  
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Problem 2. Bonded Contact. 

Consider two cylinders as being placed into contact 

as in problem 1 except in this case they are bonded together. 

For the lower cylinder, these bcundary conditions will be 

For the upper cylinder, these boundary conditions will be 

used: 

wu v ,  0 )  = w, ( r ,  1.1 (4.26a) 

1 
The self-equilibrated boundary conditions on x in this 

case are: 



(4.28a) 

(4.28b) 

(4,28c) 

(4.28d) 

Substitution of these conditions into the Fourier integrals 

as before result in the following forcing functions and 

matrices: 
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Integration of the functions G Z j  and G , j  leads to 
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Discuss ion  o f  NLGerical Resu l t s .  

To demonstrate  some of  t h e  a s p e c t s  o f  t h e  s o l u t i o n ,  

s e l e c t e d  numerical  r e s u l t s  are p resen ted  g r a p h i c a l l y  i n  

F igu res  2 through 9.  I n  t h e  graphs  which r e s u l t e d  from 

t h i s  numerical  s tudy ,  it i s  noted  t h a t  t h e  s t r e s s e s  a r e  

given i n  d imens ionless  form. Since A L  is  t h e  average a x i a l  

s t r e s s  i n  t h e  lower c y l i n d e r ,  t h e  stresses a r e  p l o t t e d  as 

r a t i o s  bz/AL, 7 / A L ,  e t c .  The d e f l e c t i o n ,  6 ,  has  been 

a r b i t r a r i l y  chosen as 

The numerical  s tudy  showed t h a t  t h e  s e r i e s ,  t r u n -  

cated a f t e r  35 terms,  e x h i b i t e d  l a r g e  o s c i l l a t i o n s  f o r  t h e  

s t r e s s e s  a t  t h e  i n t e r f a c e  due t o  t h e  d i scon t inuous  n a t u r e  

of t h e  boundary c o n d i t i o n s  a t  t h e  i n t e r f a c e .  The ampli- 

t udes  were g r e a t l y  reduced by u s i n g  F e j g r ' s  averaging  

method, as descr ibed  by Lanczos [5]. on t h e  first f i f t e e n  

terms of t h e  s e r i e s .  

F igures  2 th rough 6 a r e  f o r  a c o n f i g u r a t i o n  where 

T =  and t h e  material c o n s t a n t s  and l e n g t h s  are equal .  

The a x i a l  s t r e s s e s  as a f u n c t i o n  of  r f o r  problem 1 

i s  shown i n  Figure 2. The o s c i l l a t i o n s  i n  t h e  computed 

r e s u l t s  a t  t h e  i n t e r f a c e  are n o t  unexpected. The s h a r p  

r i s e  as t h e  v a l u e  r = is  approached is  seen  t o  have t h e  

same c h a r a c t e r i s t i c  as equa t ion  (4 .1)  f o r  t h e  r i g i d  f l a t -  

ended c y l i n d e r  on an e l a s t i c  h a l f  space.  A t  z = 0 .8  f o r  
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t h e  lower c y l i n d e r ,  it is  no ted  t h a t  a small o u t e r  p o r t i o n  

is i n  t e n s i o n .  

F igure  3 shows a schematic  of  t h e  deformed gr id  f o r  

problem 2 .  The unde r ly ing  c h a r a c t e r i s t i c  i s  t h a t  at t h e  

i n t e r f a c e ,  v e r y  small radial d isp lacements  occur  compared 

w i t h  t h e  r e s t  of t h e  c y l i n d e r s .  T h i s  is  due t o  t h e  re -  

s t r a i n i n g  a c t i o n  of  t h e  f r e e  o u t e r  annulus  of t h e  lower 

c y l i n d e r  upper f a c e .  The p o r t i o n  of  t h e  g r i d  shown dashed 

is  no t  known e x a c t l y  because o f  t h e  l a c k  of enough gr id  

p o i n t s .  The a x i a l  s t r e s s e s  a t  and n e a r  t h e  i n t e r f a c e  i s  

shown i n  F igu re  4. The o s c i l l a t i o n s  a r e  more pronounced 

t h a n  i n  problem 1; o the rwise ,  t h e  c h a r a c t e r i s t i c s  a r e  t h e  

same. F igure  5 shows t h e  s h e a r  s t r e s s e s  n e a r  t h e  i n t e r f a c e  

and Figure  6 shows t h e  radial and t a n g e n t i a l  s t r e s s e s  nea r  

t h e  i n t e r f a c e .  

A second c o n f i g u r a t i o n  has been s t u d i e d  f o r  pro- 

blem 2. I t  i s  an  equal  d iameter  case w i t h  E ,  = 0.2EL. 

For t h i s  c a s e ,  F igure  7 shows t h e  deformed g r i d .  I t  i s  

no ted  t h a t ,  i n  view of t he  d i f f e r e n t  E v a l u e s ,  t h e  v e r t i c a l  

g r i d  l i n e s  a r e  no t  smooth through t h e  i n t e r f a c e ,  The 

s l i g h t  c u r v a t u r e  o f  t h e  deformed i n t e r f a c e  is caused by 

t h e  s h e a r  s t r e s s e s  t r a n s m i t t e d  through t h e  i n t e r f a c e .  

A l i m i t e d  s t u d y  was t h e n  made t o  determine how t h e  

o v e r a l l  a x i a l  s t i f f n e s s  i s  a f f e c t e d  by changing t h e  r a t i o  

of c y l i n d e r  r a d i i e  The s o l u t i o n  from problem 2 was used 

f o r  t h i s  s tudy  and r e s u l t s  were p l o t t e d  as d imens ionless  
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r a t i o s  i n  o r d e r  t o  be a p p l i c a b l e  t o  any r a d i u s I  R L ,  f o r  t h e  

lower c y l i n d e r .  The v a l u e , ? ,  i s  t h e n  t h e  r a t i o ,  R , / R , .  

F igure  8 r e p r e s e n t s  a s tepped  c y l i n d e r  c o n f i g u r a t i o n  

where t h e  l e n g t h  of  t h e  lower c y l i n d e r  was t aken  t o  be 

equal  t o  i t s  diameter. It shows A ,  as a f u n c t i o n  o f r ) .  

The o r d i n a t e ,  A , ,  has  been def ined  i n  t h i s  f i g u r e  as 

I t  is  noted  t h a t  t h e  curve beg ins  and ends wi th  a v a l u e  o f  

1 .0  and e x h i b i t s  a minimum v a l u e  nea r  R,/R, = 0.32. 

K,/R, = 1.0, t h e  c y l i n d e r s  a r e  i n  a s t a t e  o f  uniform a x i a l  

s t r e s s .  For t n i s  r eason ,  t h e  curve  r e p r e s e n t s  t h e  e r r o r  

f a c t o r  i f  t h e  a x i a l  s t i f f n e s s ,  F/6, f o r  a s tepped  c y l i n d e r  

i s  computed on t h e  uniform ax ia l  stress assumption, as 

When 

commonly done i n  s t r e n g t h  of  materials methods. It  i s  seen  

t h a t ,  f o r  t h i s  c o n f i g u r a t i o n ,  t h e  e r r o r  can be as much as 

7% ( n e a r  R,/R, = 0 . 3 ~ ) ~  

F igure  9 r e p r e s e n t s  a s t i f f  c y l i n d e r  bonded t o  a 

c y l i n d e r  having t h e  c h a r a c t e r i s t i c s  of  rubber .  I t  shows 

A , / 6  as a f u n c t i o n  o f 7 ) ,  The o r d i n a t e ,  A,/S, is  seen  t o  b e  

Two curves  f o r  two t y p i c a l  v a l u e s  o f  t h e  r a t i o ,  &/R,, is  

given. For  j!/R,=2.0, it is seen  t h a t  t h e  curve starts a t  

ze ros  i n c r e a s e s  t o  a maximum n e a r  t h e  v a l u e  R, /R ,  = 0 .95 ,  

and then  drops s l i g h t l y  as t h e  va lue  R , / R L  = 1 . 0  is  ap- 
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proached, 

which s t i l l  remains unexplained.  

curve  has  similar c h a r a c t e r i s t i c s  except  t h a t  it is  n o t  

c e r t a i n  i f  a maximum v a l u e  is p r e s e n t .  

Tha t  t h e  curve e x h i b i t s  a maximum is  a paradox 

For //I?, = 0.5, t h e  
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F i g u r e  2. Axial S t resses ,  Problem l p  = 0.5* 

h = 1 = 1.0, V ,  = V u =  0 . 3 ,  E ,  = E, = 1.0 
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Figure  4. A x i a l  S t r e s s e s  a t  and nea r  t h e  I n t e r f a c e ,  

Problem 2 ,  = o . 5 p  
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Figure Shear S t r e s s e s  nea r  t h e  I n t e r f a c e ,  

Problem 2, 9 = 0.5, 

h = = 1.0, VL = Vu = 0.3, E ,  = E, = 1.0 



36 

0 .3  

0.2 

0.1 

-0.1 

-0*2 

-0.3 

-0.4 

-0.3 

_I_ Radial s t r e s s ,  b,/A, 

- e . -  Tangent ia l  s t r e s s ,  Oo/A, 

r 

2 = 0.8 (lower) 

z = 0.2 (uppe r )  

Figure 6 ,  Radia l  and Tangent ia l  S t r e s s e s  near  t h e  I n t e r f a c e ,  

Problem 2, 

h . ; j = l .  = 0 . 3 ,  E, =E E, = 1.0 
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Figure  7. Deformed Grid,  Problem 2 $  

h = 1 E: 1-09 V ,  E O S 3 ,  E, 1.0, E, = 0.2 
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Figure  8. Axial S t i f f n e s s ,  Problem 2 ,  Stepped Cyl inder  

Conf igura t ion ,  = Vu = 0 . 3 ,  E ,  = E,, 1 = h 
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Figure  9 .  Axial  S t i f f n e s s ,  Problem 2 ,  S t i f f  Upper Cyl inder  

Bonded t o  a Rubber Cyl inder ,  

= O e 3 9  E, = 100E, 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The s o l u t i o n  t o  a two c y l i n d e r  con tac ,  problem w a s  

achieved by  u t i l i z i n g  t h e  known s o l u t i o n  o f  t h e  f i n i t e  

c i r c u l a r  c y l i n d e r  and apply ing  t h e  a p p r o p r i a t e  boundary and 

c o n t i n u i t y  cond i t ions .  The i n t e r r e l a t e d  Four i e r  c o e f f i -  

c i e n t s  were expressed i m p l i c i t l y  by an i n f i n i t e  system of 

l i n e a r  a l g e b r a i c  equat ions .  By t r u n c a t i o n ,  an e x p l i c i t  

s o l u t i o n  of t h e  Four i e r  c o e f f i c i e n t s  was obta ined .  Two 

example problems were then  so lved .  I t  w a s  shown t h a t  a 

p a r t  o f  t h e  uniform a x i a l  s t r e s s  s o l u t i o n  i s  no t  known u n t i l  

t h e  Four i e r  c o e f f i c i e n t s  were obta ined .  

A t y p i c a l  c y l i n d e r  c o n f i g u r a t i o n  w a s  chosen f o r  a 

numerical  s tudy  of each problem. It was noted  t h a t  appre-  

c i a b l e  o s c i l l a t i o n s  in t h e  c a l c u l a t e d  s t r e s s e s  occurred  

a t  t h e  c o n t a c t  i n t e r f a c e  of  t h e  c y l i n d e r s .  These dimin- 

i shed  r a p i d l y  a s h o r t  d i s t a n c e  away f rom t h e  i n t e r f a c e .  

The comparison of  c a l c u l a t e d  results with  t h o s e  known f o r  

t h e  r i g i d  punch seem reasonab le ,  For t h i s  reason ,  t h e  

exac t  n a t u r e  o f  t h e  s t r e s s  s i n g u l a r i t y  due t o  t h e  discon- 

t i nuous  n a t u r e  o f  t h e  boundary c o n d i t i o n s  could n o t  be de- 

termined. 

A d e f i n i t e  de t e rmina t ion  of t h e  v a l i d i t y  of  t h i s  

s o l u t i o n  i s  also precluded f o r  t h i s  very  reason.  S ince  
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t h e  equ i l ib r ium and compa tab i l i t y  e q u a t i o n s r  Hooke8s l a w p  

and t h e  s t r e s s  f r e e  boundary c o n d i t i o n s  on t h e  curved su r -  

f a c e s  a r e  s a t i s f i e d  i m p l i c i t l y  from t h e  e igen func t ions ,  

t h e  s o l u t i o n  i s  v a l i d  i f  t h e  r e s t  o f  t h e  boundary condi- 

t i o n s  a r e  met, Those a t  t h e  lower and upper r i g i d  f a c e s  

a r e  met i d e n t i c a l l y .  A t  t h e  i n t e r f a c e ,  t h e  boundary con- 

d i t i o n s  a r e  met i n  an  averaged o r  i n t e g r a t e d  sense .  The 

numerical  r e s u l t s  appear t o  provide  u s e f u l  in format ion .  

To demonstrate  t h e  prac t ica l  a s p e c t s  of t h e  s o l u t i o n s  

a l i m i t e d  s tudy  w a s  made t o  determine t h e  e f f e c t  of c y l i n -  

der  radi i  r a t i o  on t h e  c o n s t a n t s ,  AL and A L / 6 .  

no ted  how t h e s e  c o n s t a n t s  can be used t o  o b t a i n  t h e  t r u e  

d e f l e c t i o n  ra te  of two c y l i n d e r s  bonded t o g e t h e r .  Some 

examples o f  t h e  a p p l i c a t i o n s  t h a t  t h i s  s o l u t i o n  could be 

a p p l i e d  t o  a r e :  shoulder  b o l t s ,  i n t e g r a l  p i s t o n s  and rod ,  

v i b r a t i o n  and shock i s o l a t o r s ,  and conc re t e  p i e r s ,  

I t  was 

The numerical  r e s u l t s  t h a t  were presented  were ob- 

t a i n e d  by using t h e  double p r e c i s i o n  mode on a SDS Sigma 7 

computer. Seventeen p a i r s  of e igenvalues  were used. In- 

t e g r a t i o n  of t h e  ma t r ix  elements was ob ta ined  i n  c l o s e d  

form. 
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APPENDIX 
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TABLE OF F U N C T I O N S  

The cp functions used i n  t h i s  t h e s i s  are: 
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The W functions are8 
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